Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production.
نویسندگان
چکیده
This study describes the photochemical deposition of Co-based oxygen evolution catalysts on a semiconductor photoanode for use in solar oxygen evolution. In the photodeposition process, electron-hole pairs are generated in a semiconductor upon illumination and the photogenerated holes are used to oxidize Co(2+) ions to Co(3+) ions, resulting in the precipitation of Co(3+)-based catalysts on the semiconductor surface. Both photodeposition of the catalyst and solar O(2) evolution are photo-oxidation reactions using the photogenerated holes. Therefore, photodeposition provides an efficient way to couple oxygen evolution catalysts with photoanodes by naturally placing catalysts at the locations where the holes are most readily available for solar O(2) evolution. In this study Co-based catalysts were photochemically deposited as 10-30 nm nanoparticles on the ZnO surface. The comparison of the photocurrent-voltage characteristics of the ZnO electrodes with and without the presence of the Co-based catalyst demonstrated that the catalyst generally enhanced the anodic photocurrent of the ZnO electrode with its effect more pronounced when the band bending is less significant. The presence of Co-based catalyst on the ZnO photoanode also shifted the onset potential of the photocurrent by 0.23 V to the negative direction, closer to the flat band potential. These results demonstrated that the cobalt-based catalyst can efficiently use the photogenerated holes in ZnO to enhance solar O(2) evolution. The photodeposition method described in this study can be used as a general route to deposit the Co-based catalysts on any semiconductor electrode with a valence band edge located at a more positive potential than the oxidation potential of Co(2+) ions.
منابع مشابه
Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation.
Photochemical deposition of Co and Ni based oxygen evolution catalysts on hematite nanorods cathodically shifted the onset potential of photocurrent near to the flat band potential of hematite. A 9.5 fold enhancement in the photocurrent density at 0.86 V vs. RHE compared to the parent hematite photoanode was observed with the Ni-Bi/Fe(2)O(3) photoanode.
متن کاملDirect Light-Driven Water Oxidation by a Ladder-Type Conjugated Polymer Photoanode
A conjugated polymer known for high stability (poly[benzimidazobenzophenanthroline], coded as BBL) is examined as a photoanode for direct solar water oxidation. In aqueous electrolyte with a sacrificial hole acceptor (SO3(2-)), photoelectrodes show a morphology-dependent performance. Films prepared by a dispersion-spray method with a nanostructured surface (feature size of ∼20 nm) gave photocur...
متن کاملImproving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.
WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The incorporation of an oxygen evolving catalyst (OE...
متن کاملLight-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst.
Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O(2) at neutral pH. Deposition of the Co-Pi catalyst on the Indium Tin Oxide (ITO)-passivated p-side of a np-Si junction enables the majority of the voltage generated by the solar cell to be u...
متن کاملCoOx nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01756a Click here for additional data file.
Development of efficient, robust and earth-abundant water oxidation catalysts (WOCs) is extremely desirable for water splitting by electrolysis or photocatalysis. Herein, we report cobalt oxide nanoparticles anchored on the surface of sulfonated graphite (denoted as “CoOx@G-Ph-SN”) to exhibit unexpectedly efficient water oxidation activity with a turnover frequency (TOF) of 1.2 s ; two or three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 49 شماره
صفحات -
تاریخ انتشار 2009